第22回
日本時間生物学会学術大会

T he 22 nd Annual Meeting of the Japanese Society for Chronobiology

2015年11月21日(土)～22日(日)
東京大学伊藤国際学術研究センター、情報学環・福武ホール
〒113-0033 東京都文京区本郷7-3-1

大会長 上田 泰己（東京大学大学院医学系研究科）

http://sys-pharm.m.u-tokyo.ac.jp/22jsc/
第22回日本時間生物学会学術大会抄録集

目次

交通案内 ・・・・・・・・・・・・・・・・・・・・・・・・・・ 69
会場見取り図 ・・・・・・・・・・・・・・・・・・・・・・・・ 70
大会のご案内 ・・・・・・・・・・・・・・・・・・・・・・・・ 73
関連集会 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 79
大会日程 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 81
プログラム ・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 82
抄録 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 111
大会準備委員 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 151
協賛企業一覧 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 152
広告 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 153
第 22 回日本時間生物学会学術大会の開催にあたって

第 22 回日本時間生物学会学術大会を 2015 年 11 月 21 日（土）〜22 日（日）の 2 日間、東京大学 伊藤国際学術センター・福武ホールにおいて開催させていただくことになりました。日本時間生物学会は、1994 年、臨床および基礎生物学としての概日時計研究者を中心として設立され、現在この分野における中心的な学会として国内外より高く評価されております。

睡眠覚醒をはじめとして、体内の多くの生理活性が 24 時間の周期性をもって活性変動を示します。この概日時計の存在は、外部の光環境と体内の時刻情報に依拠を生じる状態、例えば「時差ぼけ」の際にはそれに関係するものです。しかしながら、近年、文字通りの 24 時間社会の到来を受け、現代社会に生きる私達は、日々の生活に深く関わり、体内の時計と環境の時計のバランスが取りづらい状況にあります。シフトワーカーはもとより、子供たちさえもスマートフォン等の画面を通した深夜の光刺激がもたらす、睡眠の質の低下が問題視されています。睡眠の質の低下は、うつ病をはじめとする精神疾患の原因となりえます。これは概日時計を起因とする問題であり、本学会は基礎研究と臨床応用をつなぐ場としても重要な役割を果たしています。

一方で、基礎研究としての生物リズムは、物理物理学、数理生物学といったより理論的な研究の興味深い題材であり続けています。これまでに多くの生物種で概日時計を生み出すために必須の役割を果たす遺伝子・タンパク質が発見されていますが、それらがどのようにして正確な 24 時間という時間長を刻むのかは、いまだ明らかではありません。原子・分子レベルで生命における時間の流れの実態を明らかにすることは、それ自体極めて興味深い研究であるとともに、概日時計動作原理の深い理解、ひいては、その制御を可能とする画期的な創薬の基盤となるはずです。

本学術大会では「生命における時間を再定義する」と題し、私たちの身体が備える 24 時間周期のリズム性を現在の最新の知見を元に再検証し、より厳密かつ制御可能な形で捉えなすこと、さらには社会環境のリズム性やその破綻、あるいは波の満ち引きのリズムなど、研究室内環境では再現しにくい環境の周期的変動をも取り込んだ研究にも焦点を当て、数理から分子、社会環境まで通貫する議論が行われます。本学術大会が時間生物学の更なる発展、ご参加頂く皆様の飛躍の一助となることを願ってやみません。

上田泰己
東京大学大学院医学系研究科 教授
理化学研究所生命システム研究センター グループディレクター
交通案内

最寄り駅
- 本郷三丁目駅（東京メトロ 丸ノ内線）より徒歩8分
- 本郷三丁目駅（都営大江戸線）より徒歩7分

周辺駅
- 東大前駅（東京メトロ 南北線）より徒歩10分
- 湯島駅（東京メトロ 千代田線）より徒歩20分

■航空機をご利用の場合（空港から東京駅まで）
- 羽田空港から東京駅まで
 [羽田空港] → 京浜急行空港線（快速）印旛日本医大/青砥/成田空港行き 等（約15分）
 → [品川] → JR 京浜東北線 大宮/南浦和行き もしくは
 JR 山手線（内回り）（約11分）→ [東京]
- 成田空港から東京駅まで
 [成田空港] → 成田エクスプレス（1時間16分）→ [東京]
- 成田空港から京成上野駅まで
 [成田空港] → 京成本線（特急）京成上野行き（1時間16分）→ [京成上野]

■鉄道（主要駅から最寄り駅）
- 東京駅から本郷三丁目駅
 [東京] → 東京メトロ丸ノ内線 池袋行き（7分）→ [本郷三丁目]
- JR 上野駅から本郷三丁目駅
 [JR上野] → 東京メトロ日比谷線 中目黒行き（約1分）もしくは 徒歩（約15分）
 → [上野御徒町] → 都営大江戸線 都庁前行き（2分）→ [本郷三丁目]
- 京成上野駅から本郷三丁目駅
 [京成上野] → 徒歩（約10分）→ [上野御徒町] →
 都営大江戸線 都庁前行き（2分）→ [本郷三丁目]

■車のご利用
大学内の駐車場はご利用いただけません。自家用車でのご来会はご遠慮ください。タクシーでお越しの場合は、JR 東京駅から約25分（¥2,000）、JR 上野駅から約15分（¥1,500）です。所要時間、料金は交通状況によります。
本郷三丁目駅（地図右下）下車、本郷通りを北上し赤門から東大本郷キャンパスへ入構後、右建物が伊藤国際学術研究センター（伊藤謝恩ホール）、左建物の地下（赤門入って左折の大通りから地下への階段があります）が情報学環・福武ホールになります。

時間生物学 Vol. 21, No. 2 (2015)
— 70 —
会場案内 伊藤国際学術研究センター（大会受付、伊藤謝恩ホール、ポスター会場、懇親会会場）
■会場案内　情報学環・福武ホール（福武ラーニングシアター）
赤門より入構後、左手に情報学環・福武ホールがあります。
コンクリート壁の裏側に地下に通じる階段があり（写真矢印）、地下二階（最下階）が福武ラーニングシアター（第二会場）となります。

福武ラーニングスタジオ
福武ラーニングラボ
応接室

■会場案内　医学部教育研究棟

2F

トレーニングコース会場

13F

理事会会場

時間生物学 Vol. 21, No. 2 (2015)

— 72 —
大会のご案内

1. 大会参加の皆様へ

大会受付は、21日、22日両日ともに、伊藤国際学術研究センター地下2階 伊藤謝恩ホール前にて8:20より開始いたします。

■事前参加登録を行った方

10月2日までに参加登録し、入金が確認された方にはご登録住所へ事前に名札（参加証）・領収書・懇親会
領収書（申込者）・昼食引換券（ランチョンセミナー希望者）をお送り致します。直接、第一会場もしくは
第二会場へお越しください。参加証を忘れた方、事前に受け取ることが出来なかった方は、伊藤国際学術
研究センター地下2階の大会受付へお申し出ください。

■当日参加受付デスク

未登録の方は、大会会場受付の記名台に置いてある「登録用紙」に予め必要事項をご記入の上、「当日参加
受付デスク」にお越しください。

当日参加登録費

<table>
<thead>
<tr>
<th>一般</th>
<th>7,000 円</th>
</tr>
</thead>
<tbody>
<tr>
<td>学生</td>
<td>5,000 円</td>
</tr>
</tbody>
</table>

参加費は現金でお支払いください。クレジットカードでのお支払いはできません。

■昼食引換券（ランチョンセミナー）

事前参加申し込み時に、ランチョンセミナー参加を希望された方は、名札ケースに昼食引換券が同梱され
ています。ランチョンセミナー前に、伊藤謝恩ホール（第一会場）入り口でお弁当をお配りいたします。

希望されていない方・当日参加登録の方は、1日目、2日目のランチョンセミナーにて、引換券とお弁当の
交換が終わった後に、お弁当を受け取ることができます（先着順）。ランチョンセミナー開始前に、一旦伊
藤謝恩ホールの外へ出て頂き、「引換券無し」の列にお並びください。

■懇親会

11月21日（土）19:00 より伊藤国際学術研究センターB2F のラウンジにて懇親会を行います。当日の参加
申し込みは18:30 まで大会受付で受け付けます。懇親会費は現金でお支払いください。懇親会会場では名
札を付けてください。

懇親会費 当日参加登録 一般・学生 7,000 円

■クローカ

伊藤国際学術研究センター地下2階（大会受付階）にクローカを設けております。なお。貴重品、壊れや
すいもの、傘はお預かりできませんので、あらかじめご了承ください。

■評議員の皆様へ（投票締め切り 11月22日 16:00 まで）

学術大会に参加した評議員は、優秀ポスター賞の審査委員を務めて頂きます。記名投票とし、順位をつけ

時報生物学 Vol.21.No.2（2015）
ずに4名まで選定をお願いいたします。ご本人が発表者および共著者に含まれるポスターへの票は無効となります。本大会ではポスター発表・データーブリッツが2日間に渡って行われます。可能な限り、2日間のポスターセッションに基づき投票をお願いいたします。大会受付にて投票用紙を受け取り、受付にて投票をお願いいたします。投票締切は11月22日16:00です。

■録音や撮影の禁止
発表者の許可なしに講演スライドやポスターの撮影、録音を行うことを禁止します。

■入場に関して
大会期間中は、名札（参加証）を必ず付けてご入場ください。紛失された場合は、受付デスクにて名札のみ再発行します。

■インターネット回線
両会場では無線LANがご利用いただけます。また、情報学環・福武ホールでは有線LANもご利用いただけます（ケーブル持参）。
IDおよびpasswordは次の通りです。
・伊藤国際学術研究センター
 ID: iiro-hall
 Password: %01-2012-guest

・情報学環・福武ホール（セキュリティ上の関係で、通信ポートはメールとウェブのみに限定され、接続先ログが記録されます。ご了承ください）
 SSID: welcome
 認証: WPA2-Personal（または WPA2-PSK または WPA2）
 暗号化: AES
 Password: When?KOGARASHI-1

■プログラム・抄録集（学会誌）販売
当日会場でプログラム・抄録集（学会誌）を販売致します（2000円/冊）。

2. 発表者の皆様へ

■使用言語
日本語もしくは英語とします。ポスターおよび講演スライドは英語で作成してください。

■シンポジウム
・発表はラップトップコンピューター（ノートPC）の使用に限ります。
・発表者は発表用のPCをご持参ください。
・演台にはレーザーポインターとマイクが備え付けられています。
・OHPでの発表はできません。

時間生物学　Vol.21, No.2 (2015)
— 74 —
・PCからの音声出力はできませんので、予めご了承ください。
・事前接続・投影テストが必要な場合は、シンポジウム前に会場にてお願いいたします。会場の発表舞台に直接PCをお持ちください。
・接続はMiniD-sub15ピン3列コネクター（通常のモニター端子：右図）となります。PC本体の外挿モニター出力端子の形状を必ずご確認いただき、必要な場合は専用の接続端子をご持参ください。近年はWindows PCであっても、HDMI接続端子のみが搭載されている場合が増えておりますので、ご注意ください。
・演台では電源をご利用になれます。必要な場合はACアダプターをご持参ください。
・液晶プロジェクターの解像度はXGA（1024 x 768）です。解像度の切り替えが必要なPCは、本体の解像度の設定を予め変更しておいてください。
・念の為に、バックアップメモリー（USBメモリなど）に発表ファイルを保存し、ご持参ください。

■データーブリッツ
・ポスター発表を行う皆様には、30秒以内でご自身のポスターを口頭発表していただく「データーブリッツ」を行っていただきます。
・データーブリッツ発表は下記の時間帯です（ポスター発表と同じ日）。

<table>
<thead>
<tr>
<th>シンポジウム採択演題および偶数演題（演題番号がAでおわるもの）</th>
<th>奇数演題（演題番号がBでおわるもの）</th>
</tr>
</thead>
<tbody>
<tr>
<td>11月21日（土）13:00 - 14:00</td>
<td>11月22日（日）13:00 - 14:00</td>
</tr>
</tbody>
</table>

・ポスター発表者の皆様は、11月10日（火）までに1枚のパワーポイントスライド（アニメーション不可）、もしくはjpg形式、png形式のスライドを大会事務局までメールにてご提出ください。頂いたスライドデータはデーターブリッツ発表のみに使用し、大会終了後に全てのデータを消去いたします。

スライド提出先：jsc220m.u-tokyo.ac.jp（第22回日本時間生物学学会学術大会事務局）
スライド作成言語：英語
発表言語：日本語もしくは英語
提出締切：11月10日（火）23時59分
データーブリッツの際には、発表者はランチョンセミナー後、速やかに伊藤謝恩ホール（第一会場）の右図の位置に集合してください。
・ポスター番号順に登壇していただき、30秒以内にポスター内容をご紹介ください。
・スライドの操作は全て事務局が行います。30秒を超えると、スライドが次の発表者に移行しますので、制限時間以内に発表を終えるよう、ご留意ください。

■ポスター発表
・ポスター発表は 11 月 21 日（土）および 22 日（日）に伊藤国際学術研究センター地下1階にて行います。
・ポスターの発表者は、下記の時間帯で指定番号の位置にて発表してください。

<table>
<thead>
<tr>
<th>揭示</th>
<th>11 月 21 日（土） 8:20 ～ 11:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>撤去</td>
<td>11 月 22 日（日） 15:00 ～ 18:30（以降は学会事務局にて処分いたします）</td>
</tr>
</tbody>
</table>

■ポスター討論
シナポジウム採択演題および偶数演題（演題番号がAでおわるもの）
11 月 21 日（土） 14:00 ～ 15:00
奇数演題（演題番号がBでおわるもの）
11 月 22 日（日） 14:00 ～ 15:00

上記時間帯に、ご自身のポスター前に待機し、質疑応答を行ってください。

■ポスター掲示板サイズ
ポスターボードの大きさは縦 240 cm × 横 90 cm（A0 縦）です。左上に演題番号が貼られていますので（縦 20 cm × 横 20 cm）、余裕をもってポスターをご準備ください。

■ポスター発表を行った学会員中から「優秀ポスター賞」を選考し、日本時間生物学会より表彰いたします。受賞者の人数はおおむね発表者の5～10%です。優秀ポスター賞は学術大会に参加する評議員の投票をもとに、ポスター賞選考委員会にて選考いたします。
各種委員会

■理事会
日時：11月20日（金）17:30 - 20:30
場所：医学部教育研究棟13階 第5セミナー室

■時間生物学編集会議
日時：11月21日（土）12:30より
場所：伊藤国際学術研究センター3階 中教室
＊クローカ横（伊藤国際学術研究センター地下2階）、第一ポスター会場（同地下1階）横のエレベーターより、3階にお上がりください。エレベーター降りて右側の教室になります。

■ポスター賞選考委員会
日時：11月22日（日）16:30より
場所：伊藤国際学術研究センター2階 小会議室1
＊クローカ横（伊藤国際学術研究センター地下2階）、第一ポスター会場（同地下1階）横のエレベーターより、2階にお上がりください。エレベーター降りて前方左側の教室になります。
関連集会

■ 時間生物学トレーニングコース

日時：11月20日（金） 14:00～17:00
会場：東京大学 医学部教育研究棟 2階 第1セミナー室
会費：無料
参加資格：時間生物学会会員または入会希望者（検討中を含む）
世話人：吉村崇（名古屋大学）

趣旨:
時間が生物学が今後も発展していくためには、次世代を担う人材の育成が不可欠である。特に、時間生物学を研究対象とする若手研究者が職を得て、継続して研究を展開できることが重要である。そこで研究者として生き残る際に必要な①研究費獲得戦略、②研究計画の立て方、③ラボマネジメント、などに関するコツを、先輩方に話題提供していただき、ぎっくらんな情報交換を行うことを目的とする。

プログラム:

14:00～15:00
遠藤 求（京都大学）
「採択される さきがけ申請書の書き方」
樫木 亮介（北海道大学）
「三度目の正直～失敗例から学ぶ戦略的研究費獲得法～」

15:00～16:00
岡村 均（京都大学）
「研究チームの組み立てについて」

16:00～17:00
近藤 孝男（名古屋大学）
「基礎の本懐」
第22回 日本時間生物学会学術大会

プログラム
第22回 日本時間生物学会学術大会 プログラム概要

日時：2015年11月21日（土）- 22日（日）

会場：東京大学本郷キャンパス 伊藤国際学術研究センター、情報学環・福武ホール

事務局：東京大学大学院医学系研究科システム薬理学教室

HP：http://sys-pharm.m.u-tokyo.ac.jp/22jsc/

21日（土）

伊藤国際

8:20 参加者受付開始
9:00 - 11:50 シンポジウムⅠ
生物学時計活用戦略
（深田吉孝・八木田和弘）
10:00 - 10:30 データブリッツ
11:00 - 12:00 ボスター討論

福武ホール

9:00 - 11:50 シンポジウムⅡ
脳と時計
（内山真・岡村均）
12:00 - 13:00 ランチョンセミナー
13:00 - 14:00 データブリッツ
14:00 - 15:00 ボスター討論

22日（日）

伊藤国際

9:00 - 11:50 シンポジウムⅢ
そもそも生命にとって時間とは
（岩崎秀雄・桑和彦）
11:00 - 12:00 データブリッツ
12:00 - 13:00 ランチョンセミナー
13:00 - 14:00 データブリッツ
14:00 - 15:00 ボスター討論

福武ホール

9:00 - 11:50 シンポジウムⅣ
自然条件下でわかる
生物時計の新たな機能
（本間さと・吉村瑞）
15:00 - 16:00 シンポジウムⅤ
時钟生物学のニューフロンティアを探る
（小川時隆・沼田英治）
16:00 - 17:00 データブリッツ
17:00 - 18:00 シンポジウムⅥ
Chrono-nutrition: マウスからヒトまで
（柴田重信・三島和夫・北村真吾）
18:00 - 19:00 閉会式
優秀ポスター賞表彰式

19:00 - 21:00 恵親会
特別講演・シンポジウム・ランチョンセミナー

<11月21日（土）>

9:00 ～ 11:50 伊藤駿雄ホール

シンポジウム S1
『概日時計活用戦略』
オーガナイザー・座長：
深田吉孝（東京大学） 八木田和弘（京都府立医科大学）

概要：
生物時計が紛ぎだす概日リズムは、「自律性・同調性・温度補償性」という獨特の特性を持つが、これはバクテリアからヒトや高等植物まで共通している。基本的に生物時計はそれぞれの生物を構成する細胞ひとつひとつに備わっており、これをそれぞれの生物で様々に活用して現在まで生き延びてきた。長い進化的過程で、その活用方法は生物種によって共通するものもあれば独特なものもある。本セッションでは、生物時計のそもそもその存在意義を考えるヒントになる、様々な生物種における生物時計の活用戦略について議論してみたい。

9:00 ～ 9:05 シンポジウムイントロダクション

9:05 ～ 9:35 S1-1

A hypothetical mechanism for encoding environmental time information in mouse SCN
マウス視覚又上核における環境時間コーディングメカニズム
○山田隆裕 1
1 理化学研究所 生命システム研究センター

9:35 ～ 10:05 S1-2

Capturing the plant circadian system with a monitoring technique for individual cellular rhythms
1 細胞リズム測定から捉える植物の概日時計システム
○村中智明 1 小山時隆 1
1 京都大学 大学院理学研究科 植物学教室

10:05 ～ 10:25 P001A（ポスター採択）

Circadian periodicity encoded in cyanobacterial clock protein KaiC
時計タンパク質 KaiC に書き込まれた生物時計の発振周期
○向山厚 1,2 阿部淳 1 植山・秋 1 世永 3 Wolanin Julie 1 山下栄樹 4 近藤孝男 3 秋山修志 1,2
1 分子研・協奏分子システム 2 総研大 3 名大院・理 4 阪大・蛋白研

10:25 ～ 10:35 休憩
10:35 – 11:05 S1-3

A Physiological Function of Circadian Pacemakers in Nocturnal Rodents
哺乳類サーカディアンペースメーカーの生理機能制御
○中村浩 1
1 大阪大学大学院歯学研究科口腔機能学研究室

11:05 – 11:35 S1-4

Molecular mechanism of circadian memory formation for object recognition
物体認識記憶の日制御を担う分子メカニズム
○清水貴美子 1 小林洋大 1 仲辻英里香 1 深田吉孝 1
1 東大・院理・生物科学

11:35 – 11:50 総合討論

9:00 ~ 11:50 情報学翼・福武ホール

シンポジウム S2
『脳と時計』
オーガナイザー・座長：
内山真（日本大学） 岡村均（京都大学）

概要：
生体リズムはなぜ脳にあるのか？環境が周期的に変動するのに対応して、自律的に時を刻む生体リズムシステムが成立したのは言うまでもない。個体としてのこのシステムは、当然、脳を頂点として出来ている。個体としての生物は誕生と死の間の有限の時を生きる。この時を切り取る手段として、脳にできた時を刻むシステムとしての生体リズムは用いられているのであろうか。本シンポジウムでは、脳機能と時間がどのように結びついているのかを、生体リズムの最大のアウトプットである睡眠と覚醒を中心に考察する。脳の最高位にある大脑皮質の時計機能、覚醒、ノンレム睡眠、レム睡眠という異なった行動様態における、脳幹からの皮質活動の時間的制御を明らかにする。さらに、このダイナミックな変動を、脳機能を元ごとにヴィジュアル化する透明化技術を用いた新しい脳科学により提示する。最後に、脳の時間がどのように生まれるかを、時間発振に特化した生体リズム中枢である視交叉上核において、分子レベルで探る。

9:00 – 9:06 シンポジウムイントロダクション

9:06 – 9:36 S2-1

Potential impact of the circadian clock system on mental and cognitive functions
精神・認知に宿る体内時計機能
○栗山健一 1,2
1 滋賀医科大学・医学部・精神医学講座 2 国立精神・神経医療研究センター・精神保健研究所・成人精神医学研究部

時刊生物学 Vol. 21, No. 2 (2015)
Novel in vivo 4D imaging of clock gene expression in multiple tissues of freely moving mice

Whole-brain analysis of neural activity in the sleep/wake cycle with single cell resolution.

Cells of a common developmental origin regulate REM/non-REM sleep and wake

Identification of a new class of GPCR signalling that tunes the central clock

ランチョンセミナー　後援：MSD 株式会社
『睡眠・サーキティアフィスクスと生活習慣病～体内時計の視点から～』
講演：前村浩二（長崎大学大学院医歯薬学総合研究科 循環器内科学）
座長：大塚邦明（東京女子医科大学東医療センター）
は概日リズムを乱乱する環境に触れているため体内時計の乱れ、睡眠障害が生活習慣病の発症、進展の要因となることが懸念されている。本ランチョンセミナーでは、生活習慣病の発症、進展における体内時計、睡眠障害の意義について紹介したい。

13:00 ~ 14:00 伊藤薬学ホール
データーブリッツ
ポスター演題番号の末尾が【A】の演題
（シンポジウム採択演題および偶数演題）

14:00 ~ 15:00 伊藤国際学術研究センター地下1階
ポスタードーザン
ポスター演題番号の末尾が【A】の演題
（シンポジウム採択演題および偶数演題）

15:00 ~ 16:30 伊藤薬学ホール
総会・奨励賞受賞式および受賞講演

16:30 ~ 17:30 伊藤薬学ホール
特別講演I
『Origins: A Brief Account of the Ancestry of Circadian Biology』
講師：William J. Schwartz (Department of Neurology, University of Massachusetts Medical School)
座長：岡村均（京都大学 大学院薬学研究科）

17:30 ~ 18:30 伊藤薬学ホール
特別講演II
『Interaction between space and time in our conscious mind』
講師：北澤満（大阪大学 大学院生命機能研究科）
座長：上田泰己（東京大学 大学院医学系研究科）

19:00 ~ 21:00 伊藤国際学術研究センター地下2階 多目的スペース
懇親会
<11月22日（日）>

9:00～11:50 伊藤裕恩ホール

シンポジウム S3
『そもそも生命にとって時間とは』

オーガナイザー・座長：
岩崎秀雄（早稲田大学） 条和彦（名古屋市立大学）

概要:
本学術大会の全体テーマは「時間を再定義する」だが、このシンポジウムでは、時間生物学の基礎である「生命と時間の関係」を、さまざまな角度から問い直すことを目的とする。時間には、前後関係を規定する時間、出来事の間隔を区切る時間、周期やリズムなどの繰り返し構造をもつ時間など、様々な形の時間がある。このような時間そのものの定義を考える哲学的な試みから始まり、心理学的な時間のとらえ方、さらには、そのような時間を感じる私たちの心の起源に迫る生物学的探究など、これまでの時間生物学会では取り上げられなかった内容を中心に企画した。

9:00～9:05 シンポジウムイントロダクション

9:05～9:35 S3-1

Time Sense and Biological Clock

時間感覚と生物時計

〇本間研一
1 北大・院医・時間医学

9:35～10:05 S3-2

Subjective time explored by experimental psychology

実験心理学が明らかにする体験される時間の特性

〇一川誠
1 千葉大学・文学部・心理学講座

10:05～10:15 休憩

10:15～10:45 S3-3

Life as the material enclosing time

生命＝時間を封入したモノ

〇森山徹
1 信大・繊維・バイオ

時間生物学 Vol. 21, No. 2 (2015)

— 86 —
10:45 – 11:15 S3-4

E-series Time: Synchronic Emergence of Time for Living Organisms
E 系列の時間—同期(シンクロニシティ)からみる生物の時間
○野村直樹 ¹
1 名古屋市立大学人間文化研究科

11:15 – 11:50 総合討論

9:00 ~ 11:50 情報学環・福武ホール

シンポジウム S4

『自然条件下での生物時計の新たな機能』
オーガナイザー・座長：
本間さと（北海道大学） 吉村崇（名古屋大学）

概要：
生物時計は環境の周期性に同調することで、生体機能の最適化を図り、個体と種の保存のための優れた生存戦略システムとして機能してきた。一方、多くの時間生物学研究では、厳密で安定したデータの取得のため、自然界ではありえない照明条件、恒常的環境の下で飼育した生物を用いて時計機能を解明する研究を進めている一方で、フィールドにおける生物時計の重要な機能を忘れてきた。最近、ようやく自然環境で生物が示す、観察結果と異なる生物リズムが注目されるようになり、その分子レベルのメカニズムも少しずつ明らかにされてきた。また、ヒトの研究は基本的にフィールド研究であることも忘れてはならない。本シンポジウムは、自然界の明暗、温度、餌の質や量、捕食者、群や仲間の存在などの周期的変動の下での生物時計の機能を問い直す機会としたい。

9:00 – 9:05 シンポジウムイントロダクション

9:05 – 9:35 S4-1

Animals behave to minimize the cost of transport
エネルギー効率を重視して振る舞う野生動物たち
○佐藤克文 ¹
1 東大・大海研

9:35 – 10:05 S4-2

Plant molecular phenology: Capturing seasons under natural complex environments
植物の分子フェノロジー：複雑な自然条件下で季節を捉える
○工藤洋 ¹
1 京大・生態学研究センター

時間生物学 Vol. 21, No. 2 (2015)
Phase response of plant circadian clocks yields robust metabolic rhythms under variations in daylength.

Towards understanding the mechanism of photoperiodic time measurement in vertebrates

Regulatory mechanisms of human circadian rhythm in the real world
15:10 – 18:00 伊藤献堂ホール

シンポジウム S5
『時間生物学のニューフロンティアを探る』
オーガナイザー・座長：
小山時隆（京都大学） 沼田英治（京都大学）

概要：
時間生物学が近代的な学問として成立してからおよそ50年間、この学問は最先端のフロンティアに向かって突き進んできた。その主な対象は満月時計に代表される周期性を作り出す振動体のメカニズムである。一方、時間生物学を「時間に関係する生物学」という意味にとるならば、ここには、これまでの時間生物学が対象としてこなかった幅広い領域が存在する。従来のフロンティアがフロンティアでなくなりつつある現在、わたしたちはこれらの領域のどこまでも時間を生物学の対象とするべきだろうか。本シンポジウムでは、振動体が関係しない時間現象、単独の時計ではないというような複雑な機構、時間設定の進化生物学的な意義など、新しい研究対象の候補を時間生物学のニューフロンティアと名づけて、紹介したい。

15:10 – 15:15 シンポジウムイントロダクション

15:15 – 15:45 S5-1
Chronobiology of hatching in arthropods
節足動物の孵化をめぐる時間生物学
○沼田英治 1
1 京都大学大学院理学研究科

15:45 – 16:15 S5-2
Molecular and genetic mechanisms underlying parallel loss of seasonal reproduction in sticklebacks
トゲウオ科魚類イトヨにおける季節性繁殖の平行的喪失とその遺伝基盤
○石川麻乃 1 北野潤 1
1 遺伝研・生態遺伝

16:15 – 16:35 P004A（ポスター採択）
Search for the thermosensors involved in temperature-dependent negative masking behavior in mice
マウスにおける環境温度依存的ネガティブマスキング行動を制御する温度受容体の探索
○太田航 1 加塩麻紀子 2 富永真琴 2 吉村崇 1, 3, 4
1 名古屋大学大学院生命農学研究科 2 岡崎統合バイオサイエンスセンター（生理学研究所）

時間生物学 Vol. 21, No. 2 (2015)
16:35 – 16:45 休憩

16:45 – 17:15 S5-3

Artificial modification of four seasons response in plants.
植物の四季応答を変革する
○三村徹郎 1 栗田悠子 1 須鍋晴 1 岩村昌平 1 宇崎光弘 1 大西美輪 1 马场啓一 2
1 神戸大・院理・生物 2 京都大・生存圈

17:15 – 17:45 S5-4

Physiological function and sequence divergence of “clock proteins” of cyanobacteria without the circadian clock.
概日時計をなくしたシアノバクテリアの時計タンパク質の役割と配列の変化
○小山時隆 1
1 京都大・院理・植物

17:45 – 18:00 総合討論

18:00 ~ 19:00 伊藤報恩ホール

閉会式・優秀ポスター賞表彰式

15:10 ~ 18:00 情報学環・福武ホール

シンポジウム S6

『Chrono-nutrition：マウスからヒトまで』
オーガナイザー・座長：
柴田重信（早稲田大学） 三島和夫（国立精神・神経医療研究センター）
北村真吾（国立精神・神経医療研究センター）

概要：
Asher と Sassone-Corsi が、今年の Cell の総説で、Chrono-nutrition を大きく取り上げているように、
時間と食・栄養というキーワードは注目されている。従来、食や栄養に関しては時間軸を考慮せずに研
究が進められてきた。しかしながら種々の代謝系が体内時計の制御下にあることが分ってきたことから、
体内時計と食・栄養・機能成分の関連性を研究し、健康科学に貢献する応用研究としての chrono-
nutrition 研究が注目され始めている。本シンポジウムでは、モデル生物としてのマウスの基礎的研究
とヒトの調査研究を主体とし、chrono-nutrition の現状、問題点、将来への展望などを議論する場とし
たい。具体的には、マウスやヒトで食パターン・食事内容・機能性成分が同調にどのように影響するか、
あるいはエネルギー、筋・骨代謝などにどのように影響するかを、各種事例を基にして議論する。
15:10 – 15:15 シンポジウムイントロダクション

15:15 – 15:45 S6-1

Cell-based high-throughput assays in chrono-nutrition research
Chrono-nutrition 研究における細胞ベースのハイスループットアッセイ
〇廣田毅 1
1 名大・ITbM

15:45 – 16:15 S6-2

Effects of macronutrients of mouse diet and human foods on circadian entrainment
食饵性体内時計を促進させる三大栄養成分と、人の食事による同調効果の検討
〇池田祐子 1 柴田重信 1
1 早稲田大学 先進理工学研究科 生理・薬理研究室

16:15 – 16:35 P005A (ポスター採択)

Breakfast skipping changes circadian rhythm of body temperature and liver clock in rats
朝食欠食モデルラットにおける肝臓時計と体温概日リズムの変動
〇小田裕昭 1,2 金多恵 1 半澤史聡 3 ローラン・トマ 2 池田彩子 3 吉田安子 2,4 後藤資実 2,5
有馬寛 2,5
1 名古屋大学大学院生命農学研究科 2 名古屋大学未来社会創造機構 3 名古屋学芸大学管理栄養学部 4 名古屋大学予防早期医療創成センター 5 名古屋大学大学院医学系研究科

16:35 – 16:45 休憩

16:45 – 17:15 S6-3

Association between human chronotype as assessed by the midpoint of sleep and dietary intake in young and elderly Japanese women.
若年及び高齢女性における睡眠中央時間（Midpoint of sleep）と環境・栄養摂取量の関連
〇三戸夏子 1
1 横浜国大・教育人間科学・家政教育

17:15 – 17:45 S6-4

Impacts of sleep and dietary habits on obesity and energy metabolism in humans
ヒトの睡眠・食習慣が肥満や代謝に与える影響
〇北村真吾 1 中崎恭子 1 三島和夫 1
1 国立精神・神経医療研究センター・精神保健研究所・精神生理研究部

17:45 – 18:00 総合討論
ポスター発表（下線番号は優秀ポスター賞エントリー演題）

伊藤国際学術研究センター 地下1階
14:00 – 15:00
<11月21日（土）>
演題番号末尾がAのグループ
シンポジウム採択演題および偶数番号演題
<11月22日（日）>
演題番号末尾がBのグループ
シンポジウム採択演題および奇数番号演題

シンポジウム1 採択演題

P001A Circadian periodicity encoded in cyanobacterial clock protein KaiC
時計タンパク質KaiCに書き込まれた生物時計の発振周期
○向山厚 1,2 阿部淳 1 横山卓也 1 孫世永 3 Wolanin Julie 3 山下栄樹 4 近藤孝男 3 秋山修志 1,2
1 分子研・協奏分子システム 2 総研大 3 名大院・理 4 阪大・蛋白研

シンポジウム2 採択演題

P002A Novel in vivo 4D imaging of clock gene expression in multiple tissues of freely moving mice
新規動体追跡技術により可能になる4D imagingによる自由行動マウスの全身の遺伝子発現解析
○浜田俊幸 1 石川正純 1,2 Sutherland Kenneth 2 宮本直樹 2 木間さと 3 白山博樹 4 木間研一 3
1 北大・医・分子遺伝医学分野 2 北大・医・医学理工学分野 3 北大・医・時間生理学講座
4 北大・医・放射線医学分野

シンポジウム3 採択演題

P003A Phase response of plant circadian clocks yields robust metabolic rhythms under variations in daylength.
多様な日長条件下でのロバストな代謝リズムを可能にする植物循環時計の位相応答
○大原隆之 1 関元秀 2 Webb Alex 3 加竹理子 4
1 北海道大学大学院環境科学研究院 2 九州大学大学院システム情報科学研究院
3 Department of Plant Science, University of Cambridge 4 九州大学大学院理学研究院

シンポジウム4 採択演題

P004A Search for the thermosensors involved in temperature-dependent negative masking behavior in mice
マウスにおける環境温度依存的なネガティブマスキング行動を制御する感受体の探索
○太田航 1 加塚麻紀子 2 富永真琴 2 吉村健一 1,2,4
1 名古屋大学大学院生命農学研究科 2 岡崎統合バイオサイエンスセンター（生理学研究所）
3 名古屋大学トランスフォーマティブ生命分子研究所 4 基礎生物学研究所

時間生物学 Vol. 21, No. 2 (2015) 92
P005A Breakfast skipping changes circadian rhythm of body temperature and liver clock in rats
朝食欠食モデルラットにおける肝臓時計と体温概日リズムの変動
○小田裕昭 1,2 金多穂 1 半澤史穂 3 ローラン・トマ 2 池田彩子 3 吉田安子 2,4
後藤宏実 2,5 有馬寛 2,5
1 名古屋大学大学院生命農学研究科 2 名古屋大学未来社会創造機構 3 名古屋学芸大学
管理栄養学部 4 名古屋大学予防早期医療創成センター 5 名古屋大学大学院医学系研究科

P006A Mistimed Light Exposure Increases Obesity Risk in Human Population: The HEIJO-KYO Cohort
大林賢史 1 佐伯圭吾 1 車谷典男 1
1 奈良県立医科大学医学部

P007B Low Light Intensity at Non-Window Side Bed in the Hospital
岩本淳子 1 大林賢史 2 佐伯圭吾 2 中川利子 1 小林美和 3 伊藤恭子 3 吉田修 1 車谷典男 2
1 早稲田大学大学院 先端理工学研究科 電気・情報生命専攻 生理・薬理学研究室
2 早稲田大学 先端理工学部 電気・情報生命工学科 生理・薬理学研究室

P008A Effect of period of exercise, exercise type and span of exercise to entrainment on mouse peripheral clock.
運動の時間帯・種類・期間がマウスの末梢時計に与える影響
○佐々木裕之 1 池田祐子 1 服部雄太 2 鎌形真世 2 岩見志保 2 安田晋之介 2 柴田重信 1,2
1 早稲田大学大学院 先端理工学研究科 電気・情報生命専攻 生理・薬理学研究室
2 早稲田大学 先端理工学部 電気・情報生命工学科 生理・薬理学研究室

P009B Analysis of molecular mechanisms underlying the photoperiod-dependent cyclical parthenogenesis in water flea Daphnia pulex
ミジンコの光周期依存的な周期性単為生殖を担う分子基盤の解析
○豊田賢治 1 井口泰泉 1
1 基礎生物学研究所

P010A Circadian rhythm of liquid tear secretion
涙液分泌量のサーカディアンリズム
綾木雅彦 1,2 ○宇津木航平 2 植日出雄 2 植田芳樹 2 永江功治 2 橋本義弘 2 篠原保子 2
1 慶應義塾大学医学部眼科学教室 2 真生会富山病院アイセンター

P011B Vasopressin V1a and V1b receptors have a key role in generating phase differences among cellular circadian oscillations in the suprachiasmatic nucleus
バソプレッシン受容体による視交叉上核細胞振動間の位相差形成
○水野貴圀 1 山口賀章 1 溝口隆洋 1 匠宏 2 岡村均 1
1 京大・院薬・システムバイオ 2 お茶大・基幹・情報科学
P012A A brand-new automatic machine, AutoCircaS, demonstrating Drosophila circadian rhythms of sleep, locomotor and proximity behaviors.

P013B Effect of changes in the serotonin system on clock gene expression in mice

P014A In vivo recording of clock gene expression in the suprachiasmatic nucleus of freely moving rats

P015B Characters of entrainment by intraperitoneal administration of DEX in peripheral clocks of Clock mutant mice

P016A CRY-driven circadian clock protein kinase activity

P017B Alteration of the circadian clock system by mitomycin C in fibroblast

P018A The effect of LL housing during neonatal period on the circadian clock function in adult mice.
P019B Circadian rhythm in arginine vasopressin expression monitored by a bioluminescence reporter

発光レポーターを用いたアルギニンパフォレッセン発現の概日リズム解析

○吉川朋子1,2 中島芳浩3 山田淑子1,2 楢木亮介1,2 渡辺和人4 山崎麻耶5
崎村健司5 本間さと2 本間研一2
1 北大・院気・光バイオイメージング 2 北大・院気・時間医学 3 産総研・健康工学
4 獸協医科大学・医・生理 5 新潟大・脳研・細胞神経生物

P020A Effects of acid milk on entrainment of mice peripheral clocks

酸性乳のマウス末梢時計調律に対する効果

○安田和之1 池田祐子1 服部雄太1 岩見志保1 佐々木裕之1 鏡形真世1 東誠一郎2
野間晃幸2 伊藤裕之2 柴田重信1
1 早稲田大学 先進理工学研究科 生理・薬理研究室 2 株式会社 明治 研究本部 食機能科学研究所

P021B Role of ecto-ATP hydrolyzing enzyme, Enpp1, in the circadian rhythm in extracellular ATP level in MEFs

ATP エクト代謝酵素 Enpp1 を介した細胞外 ATP 濃度の概日リズム形成機序

佐々木崇志1 對馬千沙都2 竹生田淳2 茂木明日香1 谷本和也2 原弥生1 鈴木登紀子1
太田英伸3 小林正樹4 柴田重信5 〇守屋孝洋1,2
1 東北大学大学院薬学研究科・細胞情報薬学分野 2 東北大学薬学研究科・細胞情報薬学分野
3 国立精神・神経医療研究センター 4 東北工業大学 5 早稲田大学

P022A Circadian rhythm of the mucosal immune system of the mouse oral cavity is evaluated by salivary IgA secretion

唾液中 IgA からみるマウス口腔内粘膜免疫の日内リズム

○和田美咲1 北川絵理1 柴田重信1
1 早稲田大学 先進理工 電気・情報生命 生理・薬理学研究室

P023B Seasonal encoding in the SCN: circuit principles and GABA

○Myung Jihwan1 Takumi Toru1
1 RIKEN Brain Science Institute

P024A Analysis of mRNA and protein expression profiles of core circadian genes.

概日コアルーブ遺伝子の mRNA 及びタンパク発現解析

○松澤樹1
1 株式会社 医学生物学研究所 基礎試薬開発部

P025B Reduction of translation rate stabilizes circadian rhythm and reduces the magnitude of phase shift

概日リズムの頑健性と安定性の制御

○中島正人1 鯉沼聡1 重吉康史1
1 近畿大学・医・解剖学
P026A Analysis of circadian rhythms using stable transgenic duckweeds that express circadian bioluminescence reporters

ウキクサ植物の発光レポーター安定形質転換体を用いた概念リズム解析

〇伊藤照悟 1 上野賢也 1 内海陽子 1 小山時隆 1
1 京都大学大学院 理学研究科 生物科学専攻 植物学教室 形態環境学 時間生物学グループ

P027B Photoactivation of circadian rhythms input using NEO Light-Gated Glutamate Receptor

NEO Light-Gated Glutamate Receptor を用いた概念リズムインプット経路の光刺激

〇沼尾利佳 1, 2 松尾美奈子 1 木村尚文 1
1 豊橋技科大・環境生命工 2 豊橋技科大・EIIRIS 研究所

P028A Decentralized circadian clocks process thermal and photoperiodic cues in specific tissues

組織特異的に概念時計機能を阻害した系における表現型解析

〇清水華子 1 片山可奈 1 古藤知子 1 鳥井孝太郎 1 荒木崇 1 遠藤求 1
1 京大・院生命科学・分子代謝

P029B Relationship of sports category, frequency and time of day for training to Czech college athletes’ mental health and sleep quality

チェコ共和国大学生アスリートの競技カテゴリー・トレーニング頻度・時間帯と睡眠健康や精神衛生との関係

〇辻藤子 1 Krejci Milada2 中出美代 3川田尚弘 4 野地照樹 4 竹内日登美 5 原田哲夫 5
1 高知大学大学院総合人間自然科学研究科環境生理解教育室 2 バレエストラ体育スポーツ大学
3 東海学園大学健康栄養学部 4 高知大学地域連携推進センター 5 高知大学大学院総合人間自然科学研究科環境生理解教育室

P030A Whether students aged 18-35 yrs live alone or with someone else and their circadian typology and sleep habit

大学生・専門学校生の同居形態と概念タイプ度及び睡眠習慣との関係について

辻藤子 1 山崎友美子 1 中岡美代 2 〇川田尚弘 3 野地照樹 3 Krejci Milada 4
竹内日登美 1 原田哲夫 1
1 高知大学大学院総合人間自然科学研究科環境生理解教育室 2 東海学園大学健康栄養学部
3 高知大学地域連携推進センター 4 バレエストラ体育・スポーツ大学

P031B Mechanisms of fast resetting of clocks following rhythm bifurcation

〇野口貴子 1, 2, 3 Harrison Elizabeth1, 2, 4 Sun Jonathan1, 2 Welsh David1, 2, 3 Gorman Michael1, 2
1University of California, San Diego 2 Center for Circadian Biology
3 Veterans Affairs San Diego Healthcare System 4 Naval Health Research Center
P032A The CCHa1 neuropeptide as a new candidate for an output factor of the Drosophila circadian clock

キヨロショウジョウバエ概時計の新規出力因子 CCHa1 神経ペプチド

○藤原有里 1 井田隆徳 2 吉井大志 1
1 岡山大学 大学院自然科学研究科 2 宮崎大学 フロンティア科学実験総合センター

P033B Neural connections originating in the suprachiasmatic nucleus are necessary for estrous cyclicity

視交叉上核からの神経投射は性周期を維持するために必須である

○水田智斗 1 大野望美 1 中村浩 2 中村孝博 1
1 明治大学農学部生命科学科動物生理学研究室 2 大阪大学大学院歯学研究科口腔時間生物学研究室

P034A Identification and expression analysis of Cry1a,c in weather loach

ドジョウにおける Cry1a,c の同定と発現解析

○更谷有哉 1 竹内悠記 1 阿部大輝 1 岡野恵子 1 岡野俊行 1
1 早稲田大学先端理工学部電気・情報生命工学科

P035B Identification of a new class of GPCR signaling that tunes the central clock.

生体中枢時計を調律する新規オーファン GPCR の同定

○村井伊織 1 土居雅夫 1,2 岡村均 1,2
1 京大・院薬・薬創成情報科学 2 科学技術振興機構・CREST

P036A Study of Chrono-exercise and Chrono-nutritional effect on the bone in mice

運動、食事のタイミングが骨に及ぼす影響の検討

○服部雄太 1 佐々木裕之 1 岩見志保 1 安田芳之介 1 池田祐子 1 鎌形真世 1 青山哲也 1 柴田重信 1
1 早稲田大学 先端理工学 電気・情報生命 生理・薬理学研究室

P037B Diet composition and related genes affecting Mating Behavior Rhythm of Drosophila Melanogaster

ショウジョウバエ挙愛行動リズムに影響する食餌成分と関連遺伝子の研究

○坂田一樹 1,2 川崎陽久 2 鈴木孝洋 2,3 石田直理雄 1,2
1 筑波大学大学院生命環境科学研究所 2 国立研究開発法人産業技術総合研究所
バイオメディカル研究部門 石田時間生物特別研究チーム 3 株式会社シグレイ

P038A Entrainability of the plant circadian rhythm to a range of light-dark cycles dependently on the stability and the period of cellular circadian rhythms

細胞概日リズム安定性と固有周期とに依存したウキクサ植物の明暗周期同調特性

○岡田全朗 1 小山時隆 1
1 京都大学大学院・理学・生物科学・植物学
P039B Characteristic of circadian rhythm of brain monoamine levels from a model mouse with night eating syndrome

夜食症候群モデルマウスにおける脳内モノアミン潮流リズム変動の特徴

○福澤雅一 Ṁ原口建嗣 Ṁ西村裕太郎 Ṁ岩見志保 Ṁ木橋弘章 Ṁ安田晋之介 Ṁ柴田重信
1 早稲田大学 先進理工 電気情報・生命 生理・薬理学研究室

P040A Analysis of clock protein in the cyanobacterium *Prochlorococcus marinus* str. NATL1A

海洋性シアノバクテリアの時計タンパク質発現解析

○森田朗嗣 Ṁ山口陽光 Ṁ北山陽子 Ṁ小山時隆 Ṁ近藤孝男 Ṁ菅名伸介
1 横市大・院・生命ナノ 2 名大・院・理 3 京大・院・理

P041B Dosing time-dependent change in the beneficial effect of sesamin on high fat-induced hyperlipidemia in rat.

セサミンのラット脂質代謝改善効果における投与時間の及ぼす影響

○石田久史 Ṁ青山青也 Ṁ田中瑞穂 Ṁ小島修一 Ṁ檜木智裕 Ṁ伊地智希 Ṁ柴田浩志 Ṁ柴田重信
1 早稲田大学 先進理工学部 電気・情報生命工学科 柴田研究所
2 サントリーユエルネス株式会社 健康科学研究所

P042A Characteristics of circadian behavioral rhythms in CBA substrains

CBA亜系統における約律行動リズム特性

○伊藤真々花 Ṁ中野まりな Ṁ武井美智 Ṁ中村涉 Ṁ下村和宏 Ṁ中村孝博
1 明治大学農学部生命科学科動物生理学研究室 2 大阪大学大学院歯学研究科口腔時間生物学研究室
3 Department of Medicine, Northwestern University Feinberg School of Medicine

P043B Analysis of cell-cell interaction in the circadian system in plants using a partial-illumination system to the micro-area

局所光照射装置を用いた植物約律時計システムにおける細胞間相互作用の解析

○四方純一 Ṁ村中智明 Ṁ小山時隆
1 京都大学理工学研究科生物科学専攻

P044A A relation between circadian clock and bleomycin-induced interstitial pneumonia mouse model.

ブレオマイシン誘発性間質性肺炎モデルマウスにおける体内時計の役割解明

○北川純一 Ṁ和田美咲 Ṁ柴田重信
1 早稲田大学大学院 先進理工学研究科 電気・情報生命専攻 生理・薬理学研究室

P045B Study on the light-dependent establishment of circadian clock during development in zebrafish

○平山順 Ṁ仁科博史
1 東京医科歯科大学難治疾患研究所 発生再生生物学分野
P046A ROC75 is a key regulator in the day phase of circadian clock in the green alga
Chlamydomonas reinhardtii

P047B Electrochemical detection of cyanobacterial circadian redox rhythm

P048A Polymethoxyflavones in black ginger (kaempferia parviflora) regulate the expression of
circadian clock genes

P049B Renal circadian clock system in mice with adenine-induced tubulointerstitial nephropathy

P050A Diurnal changes in the synthesis of estrogen in the chick pineal gland

P051B Genome-wide circadian transcription through a clock cis-element D-box

P052A Inhibition of IgE-mediated allergic reaction by pharmacologically targeting the circadian clock
P053B Cinnamic acid regulates circadian rhythms in vitro and in vivo.
生薬由来成分ケイ皮酸の体内時計制御作用
○山本幸織1 大蔵直樹2 大池秀明3 大石勝隆1,4,5
1 国立研究開発法人 産業技術総合研究所 パイオメディカル研究部門 生物時計研究グループ
2 帝京大学 薬学部 病態生理学研究室 3 国立研究開発法人農業・食品産業技術総合研究機構
食品総合研究所 4 東京大学大学院 新領域創成科学研究科 メディカル情報生命専攻
5 東京理科大学大学院 理工学研究科 応用生物科学専攻

P054A Analysis of CI-CII coupling mechanism in cyanobacterial clock protein KaiC
時計タンパク質 KaiC の CI-CII カップリングによるリズム発振機構
○伊藤久美子1 中西華代1 原美由紀1 近藤孝男1
1 名古屋大学大学院 理学研究科

P055B Effect of amplitude on mathematical model of jet-lag mouse
時差ぼけマウスの数理モデルにおける振幅の影響
○谷口由樹1
1 立命館大学大学院理工学研究科

P056A Screening for small molecules that regulate circadian rhythms in mammals
哺乳類の満日リズムの周期を調節する化合物の探索
○大川（西脇）妙子1,2 小林薫2 山中衣織1 佐藤綾人1 大島豪3 Anupriya Kumar1 山口潤一郎1,3
川邑里佳2 武藤慶3 廣田穎1 八木田和弘4 Steve A. Kay1 Stephan Irle1,3 伊丹 健一郎1,3
吉村 崇1,2
1 名大・WPI-ITbM 2 名大・院生命農 3 名大・院理 4 京都府立医科・統合生理

P057B Influence of sedentary behavior on circadian rhythm of heart rate and cardiac autonomic activity
○宮城里佳1 和泉爽1 藤崎ゆう1 橋爪真彦1 塩谷英之1
1 神戸大学大学院 保健学研究科

P058A The role of skeletal muscle glucocorticoid receptor in the affective photoperiodism
情動の光周期における骨格筋グルココルチコイド受容体の役割
○田代郁子1 五田亮世1 柴田里美1 高井佑輔1 大塚剛司1 古瀬充宏1 安尾しのぶ1
1 九大院・生資環

P059B Influence of the day length in the early growth period on the neurogenesis and behavior.
初期成長期における日長が情動行動や神経新生に及ぼす影響
○高井佑輔1 河井美里1 市瀬宏志1 古屋茂樹1 有働洋2 古瀬充宏1 安尾しのぶ1
1 九大院農 2 九大院理

時間生物学 Vol. 21, No. 2 (2015)
—100—
P060A Diurnal associations between mother’s symptoms and mother-infant phase differences in biological rhythms

母親の自覚症状の日内変動と母子間の生体リズムの位相差との関係
○清水悦子 1 中村亨 1 金鑑 賢 1 吉田 一浩 2 山本義孝 1
1 東京大学大学院教育学研究科 2 東京大学医学部附属病院心療内科

P061B Interactome analysis to search regulating factors of CLOCK-BMAL1 in mice.

インタラクトーム解析によるマウス CLOCK-BMAL1 の調節因子の探索
○広瀬健太郎 1 吉種光 1 杉山慶憲 1 秦裕子 2 尾山大明 2 深田卓智 1
1 東京大学 大学院理学系研究科 生物科学専攻 2 東京大学 医科学研究所
疾患プロテオミクスラボラトリー

P062A Time-fixed feeding prevents obesity induced by chronic jet lag condition in mouse

マウス時差ボケモデルにおける肥満の誘導と食餌時刻固定による抑制
○大池秀明 1 一師克成 1 小塚真珠子 1
1 農研機構 食品総合研究所

P063B Development of new methodology enabling reconstruction of central circadian clock in mammals.

哺乳類の中枢時計の再構築と構成的解釈を目指した基盤技術の開発
○平田快洋 1 織富（栗林）香織 2 榎木亮介 1 本間研一 3 本間さと 3
1 北京・医・光バイオイメージ 2 北京・情報・細胞生物工学 3 北京・医・時間医学

P064A Temporal analysis of Cry mRNA levels in zebrafish

ゼブラフィッシュにおけるクリプトクロムの発現変動解析
○玉澤歩実 1 岡野恵子 1 戸田りこ 1 岡野俊行 1
1 早稲田大学 先進理工学研究科 電気・情報生命専攻

P065B Characteristics of sleep habits and daytime sleepiness of Japanese university students on condition that we consider their psychological factors

特性が睡眠習慣と日中睡眠性についてその心理的因子を考慮した
○成澤元 1 安正典 2 根本勇也 2 高橋敏治 2
1 東京医科大学睡眠学講座 2 法政大学大学院人文科学研究科

P066A Photic induction of clock-related genes in Fugu eye cells

フグ眼球由来培養細胞における時計関連遺伝子の光応答性
○伊藤正晴 1 岡野恵子 1 小瀧一 1 佐藤駿一 小太刀佐和 1 宮台俊明 2 竹村邦彦 3 岡野俊行 1
1 早稲田大学先進理工学部電気・情報生命工学科
2 福井県立大学海洋生物資源学部海洋自然科学研究科
P067B Automatic monitoring of the growth and circadian rhythm in Arabidopsis thaliana under hydroponic cultivation conditions

養液栽培環境下におけるシロイヌナズナの成長と周日リズムの自動計測
○北岡竜太 1 角本慶太 1 増田亜作 2 福田弘和 1
1 大阪府立大学大学院 工学研究科 2 大阪府立大学 工学域

P068A Recovery from arrhythmia of cyanobacterial circadian rhythms under low temperature conditions by periodic external force

低温下のシアノバクテリアの周日リズムの周期的な刺激による回復
○大島千明 1 伊藤浩史 1
1 九州大・芸術工

P069B A Network Model of Velocity Responsive Pacemakers for Photoperiod-dependent Synchronization Dynamics in SCN

視交叉上核の日長依存性同期ダイナミクスの速度応答振動子ネットワークモデル
○吉岡亜由美 1 中尾光之 1 片山統裕 1
1 東北大学大学院情報科学研究科バイオモデリング論研究室

P070A Identification of the amino acid sequences that are responsible for generating oscillation —The molecular evolution of the cyanobacterial circadian clock protein, KaiB

シアノバクテリア周日時計タンパク質 KaiB のリズム発振機能に関わるアミノ酸配列と
その進化的考察
○廣田周平 1
1 京都大学理学研究科 植物学教室 形態統御学分科

P071B Circadian control of UV resistance in cyanobacteria

シアノバクテリアの周日 UV 耐性リズムとその機能
○川崎洗司 1 岩崎秀雄 1
1 早稲田大学大学院 先進理工学研究科 電気・情報生命専攻

P072A In fission yeast, expressing mouse olfactory receptors

分裂酵母内でのマウス嗅覚受容体の発現
○岸本祐樹 1
1 東京工業大学・生命理工学研究科・長田研究室

P073B Molecular mechanism for CRY protein stabilization through FBXL21-mediated ubiquitination

FBXL21 によるユビキチン化を介した CRY タンパク質の安定化メカニズムの解明
○野辺加織 1 吉種光 1 平野有沙 2 中川智貴 1 弓本佳苗 3 中山敏一 3 深田吉孝 1
1 東京大学大学院理学系研究科 2 University of California San Francisco 3 九州大学生体防御医学研究所
P074A Effects of aging on a “Social jet lag” in mice
マウス概日行動リズムの加齢変化と“社会的”時差ポケ
○高須奈々 1 中村孝博 2 草野慎之介 1 中西祐一郎 1 徳田功 3 中村渉 1
1 大阪大学大学院歯学研究科口腔機能学研究室 2 明治大学農学部生命科生育物理学研究室
3 立命館大学理工学部機械工学科

P075B Pleiotropic regulation of Cryptochrome protein stability paces the oscillation of the mammalian circadian clock.
CRYタンパク質の多面的安定性制御は概日時計の発振速度を調整する
○中川智貴 1 平住有沙 1 楢義光 1 尾山大明 2 秦裕子 2 ランジャコーンシリバン サーリン 1
深田吉孝 1
1 東京大学大学院理学系研究科生物科学専攻 2 東京大学医科学研究所

P076A α1B-adrenergic receptor signaling controls circadian expression of the osteoprotecterin by regulating clock genes in osteoblasts
○平居貴生 1 田中健二郎 1 戸越花史 1
1 愛知学院大学歯学部薬理学講座

P077B Skeletal muscle specific circadian gene involved in thermogenesis during prolonged starvation in mice
低栄養性の低体温によって発現が誘導される骨格筋特異的な日周発現遺伝子
○中尾玲子 1 山崎春香 1,2 野呂知加子 2 大石勝隆 1,3,4
1 国立研究開発法人産業技術総合研究所 バイオメディカル研究部門 生物時計研究グループ
2 日本大学生産工学部 応用分子化学科 3 東京理科大学大学院 理工学研究科 応用生物科学専攻
4 東京大学大学院 新領域創成科学研究科 メディカル情報生命専攻

P078A Functional coupling between circadian clock and A-to-I RNA editing generating a wide variety of RNA rhythms
広範なRNAリズムを作り出すA-to-I RNA編集と時計振動体との機能連関
○寺嶋秀騎 1 吉瀬光 1 尾崎由 2 鈴木和 2 榎原結 3 岩崎渉 1 深田吉孝 1
1 東京大学 大学院理学系研究科 2 東京大学 大学院新領域創成科学研究科 3 日本大学 薬学部

P079B Circadian gene expression rhythm in cyanobacteria
シアンノバクテリアの時計タンパク質KaiCのリン酸化状態と遺伝子発現制御
○北山陽子 1 太田早紀 1 本間道夫 1 近藤孝男 1
1 名大・理・生命理学

P080A Input signaling that resets the cellular circadian clock through induction of clock related genes
細胞時計の新しい同調刺激の探索とそのシグナリング解析
○今村聖路 1 吉義光 1 深田吉孝 1
1 東大・院理・生科
時間生物学 Vol. 21, No. 2 (2015)
 Effects of sleep and eating habits on obesity
睡眠および食習慣が肥満に及ぼす影響
○中崎浩平 1 北村真吾 1 肥田昌子 1 元村祐貴 1 三島和夫 1
1 国立精神・神経医療研究センター 精神保健研究所 精神生理研究部

Roles of vasopressin-producing neurons in the central circadian pacemaker
中枢精日時計におけるバソプレシン産生ニューロンの役割
○三枝理博 1 小野大輔 2 長谷川恵美 1 岡本仁 3 本間研一 2 本間さと 2 櫻井武 1
1 金沢大学医学系 分子神経科学・統合生理学 2 北海道大学大学院医学研究科 時間医学講座
3 理化学研究所脳科学総合研究センター 発酵遺伝子制御

Investigation of spatial period differentiation in the SCN organotypic culture of neonatal mice.
マウス培養視覚神経上核における領域特異的周期差の探索
○筋野良 1 塚沼聡 1 重吉康史 1
1 近畿大学医学部解剖学

Difference in meal habit due to soccer-performance level of Japanese university athletes
大学生アスリートの競技力の差異による食習慣の違い
○中出美代 1 竹内日登美 2 高森友里 2 赤瀬子 2, 3 Krejci Milada 4 野地輝樹 4 川田尚弘 4 原田哲夫 5
1 東海学園大学健康栄養学部 2 高知大学大学院総合人間自然科学研究科環境生理学研究室
3 パレストラ体育スポーツ大学 4 高知大学地域連携推進センター 5 高知大学大学院
総合人間科学研究所環境科学総合研究室

SCOP/PHLPP1β in the forebrain regulates circadian output of mouse affective behaviors
○中野翔 1 清水貴美子 1 深田吉孝 1
1 東京大学大学院理学系研究科生物科学専攻

Profiles of human circadian clock regulations modeled by cAMP/calcium signaling in retinal pigment epithelial cells
○五十嵐梨菜 1 明池菜枝 1 竹内公平 1 森岡絵里 1 池田真行 1
1 富山大学・理学部・生物学科

Sleep-health promoting effects of milk intake at breakfast in Japanese University athletes
運動部所属学生対象の介入調査～朝食時の牛乳摂取による睡眠改善効果の検証～
○竹内日登美 1 高森友里 1 中出美代 2 赤瀬子 1, 3 Krejci Milada 4 渡部嘉哉 4 溝沢俊二 4 川田尚弘 5
野地輝樹 4 原田哲夫 1
1 高知大学総合人間自然科学研究所環境生理学研究室 2 東海学院大学健康栄養学部
3 パレストラ体育スポーツ大学 4 高知大学医学部養護学科 5 高知大学地域連携推進センター
P088A Effect of time-restricted feeding on circadian expression profiles of genes related to energy metabolism in peripheral tissues

P088B Mathematical model of circadian rhythms involving feedback from peripheral organs

P090A Influence of symbionts on host circadian clock

P091B Chronopharmacological study of pregabalin for diabetic peripheral neuropathic pain

P092A Is the eclosion timing of the onion fly in response to the amplitude of temperature cycle at different soil depths attributed to the phase delay response?

P093B Robustness of Cyanobacterial Circadian Rhythms against Dark Pulses during Observation

P094A Role of PPARα in the circadian regulation of xanthine oxidase activity in mice
P095B Development of an integrated system to rapidly evaluate the temperature compensation of clock proteins
時計タンパク質の温度補償性を迅速評価するための自動化装置およびゲル解析ソフトの開発
○古池美彦 1,2 向山厚 1,2 秋山修志 1,2
1 分子科学研究所協奏分子システム研究センター 2 総合研究大学院大学

P096A Bright light as an enhancer of cognitive-behavioral therapy for insomnia
高照度光による不眠症認知行動療法の効果増強
○吉池卓也 1,2 中里裕子 1 岡田昭 2 森長修 2 中村元昭 2 栗山健一 1,3
1 国立精神・神経医療研究センター 精神保健研究所 成人精神保健研究部
2 神奈川県立精神医療センター 3 滋賀医科大学精神医学講座

P097B A developmental analysis of the clock neuron network in the fruit fly Drosophila melanogaster
ショウジョウバエ時計神経細胞の発生メカニズムの解析
○瓜生央大 1 丹羽隆介 1
1 筑波大・院・生命環境

P098A Quantitative Analysis of Human Sleep Unit
ヒトの睡眠単位の定量的解析
林里花 1 池上あずさ 2 ○条和彦 1,2
1 名市大院・薬・神経薬理 2 くわみず病院

P099B Measurement and analysis of circadian PER2 rhythms from the olfactory bulb
in freely moving mice
自由行動下マウス嗅球のPER2リズム計測と解析
○小野大輔 1 本間研一 2 本間さと 2
1 北海道大学大学院医学研究科 光バイオイメージング部門 2 北海道大学大学院医学研究科
時間医学講座

P100A The CRISPR/Cas9-mediated disruption of clock genes in mouse ES cells.
マウス ES細胞におけるCRISPR/Cas9システムを用いた時計遺伝子ターゲティング
○土谷佳樹 1 梅村康浩 1 伊藤浩史 2 細川俊浩 1,3 原覚之 1,4 八木田和弘 1
1 京都府立医科大学大学院統合生理学 2 九州大学芸術工学府 3 京都府立医科大学整形外科
4 京都府立医科大学腫瘍内科

P101B Investigation of light sensitive A oscillator and temperature sensitive B slave oscillator that
regulate the eclosion rhythm of Drosophila melanogaster.
キイロショウジョウバエ羽化リズムにおける主従2振動体モデルの検証
○伊藤千絵 1 富岡憲治 1
1 岡山大学大学院自然科学研究科
P102A Intracellular coupling mechanisms revealed by simultaneous multi-functional recordings in the suprachiasmatic nucleus

P103B Response of KaiC ATPase activity to phase shifting of the KaiC phosphorylation cycle by temperature step

P104A Slow ATP hydrolysis reaction and its regulatory mechanism in KaiC ATPase

P105B An abrupt shift in the LD cycle causes desynchrony of core and shell in the mouse suprachiasmatic nucleus

P106A Period extension of the KaiC phosphorylation cycle by heavy water.

P107B Effect of Tryptophan Supplement Intake in the Morning on DLMO under Different Light Intensities in Daytime in Humans
P108A Clock genes of nocturnal bird owl
夜行性鳥類フクロウの時計遺伝子群の同定
○梅津輝 1 伊藤大輔 1 伊藤正倫 1 阿部智 1 人見愛 1 深田陽平 1 鈴木智大 2
守山拓弥 1 飯塚雅之 1, 2, 3, 4
1 宇都宮大学農学部 2 宇都宮大学 C-Bio 3 宇都宮大学 CORE
4 宇都宮大学雑草と里山の科学教育研究センター

P109B Reduction of intracellular NAD+ promotes the extension of periods of circadian clock genes.
細胞内 NAD+ 減少は、概日時計遺伝子発現周期の延長を惹起する
○芦森温茂 1 中畑泰和 1 松井貴輝 1 別所広全 1
1 奈良先端大 バイオ

P110A Environmental receptor identified in the deep-sea fish using the next Generation Sequencer
次世代シークエンサーを用いた深海魚における環境情報受容体同定
○伊藤大輔 1 梅津輝 1 伊藤正倫 1 阿部智 1 青木沙織 1 鬼塚裕子 1 深田陽平 1 鈴木智大 2
飯塚雅之 1, 2, 3, 4
1 宇都宮大学 農学部 2 宇都宮大学 C-Bio 3 宇都宮大学 CORE
4 宇都宮大学 雑草と里山の科学教育研究センター

P111B CCK-1 receptors are involved in the circadian rhythm of the retina
○山川裕介 1 小林大介 1 窪田敏夫 1 土持有希 1 玉田将幹 1 鳥添隆雄 1
1 九州大院・栄・臨床育薬

P112A Estimation of cellular phase response curve through a spatiotemporal pattern and dependence
of phase response of cell population for synchrony
細胞集団位相相応答の同期率依存性と時空間パターンを利用した細胞 PRC 推定法
○鶴井和也 1 福田弘和 1
1 大阪府立大学大学院 工学研究科 機械系専攻

P113B Diurnal oscillation of gut microbiota and an influence of immobilization stress on microbial
rhythmicity
腸内細菌の日内リズムと拘束ストレスによる影響
○星野友梨 1 高見澤菜穂子 2 丸山徹 1 細川正人 2 柴田重信 1 矢澤一良 2 竹山春子 1
1 早稲田大学理工学術院 2 早稲田大学 ナノ・ライフ創薬研究機構

P114A Are circadian rhythms of firefly bioluminescence phase-shifted by monochromatic light?
ゲンジボタルの発光サーキディアンリズムは何色の単色光で位相変位を起こすか？
○平松黃 1 飯塚雅之 2, 3, 4, 5
1 宇都宮大学国際学部 2 宇都宮大学農学部 3 宇都宮大学 C-Bio 4 宇都宮大学 CORE
5 宇都宮大学 CWWM
P115B Functional analysis of pineal serotonin in mice
マウスにおける松果体セロトニンの生理機能解析
〇池上啓介 1 重吉康史 1
1 近大・医・解剖

P116A Longitudinal study of relationship between self-awakening and sleep/wake habits
自己覚醒習慣と関連する睡眠習慣に関する縦断的調査研究
〇池田大樹 1,2 林光緒 3
1 日本学術振興会 2 国立精神・神経医療研究センター精神保健研究所成人精神保健研究部
3 広島大学大学院総合科学研究科

P117B Are bioluminescence of fireflies regulated by circadian clock?
ヒメボタルとオバボタルの発光は体内時計に制御されているか？
〇飯飼雅之 1,2,3,5,6 平松雄 6
1 宇都宮大学農学部 2 東京農工大学大学院総合農学研究科 3 名古屋大学 ITbM
4 名古屋大学大学院生命農学研究科 5 宇都宮大学 C-Bio 6 宇都宮大学 CORE 7 宇都宮大学国際学部

P118A Is the saccus vasculosus of fish the fourth eye?
血管囊は第4の目？
小菅克弥 1 〇鬼塚裕子 1 伊藤正倫 1 伊藤大輔 1 梅津輝 1 阿部啓 1 深田陽平 1,2 吉村崇 3,4
飯飼雅之 1,2,5,6,7
1 宇都宮大学農学部 2 東京農工大学大学院総合農学研究科 3 名古屋大学 ITbM
4 名古屋大学大学院生命農学研究科 5 宇都宮大学 C-Bio 6 宇都宮大学 CORE 7 宇都宮大学国際学部

P119B Association study of circadian genes in a Japanese population
日本人集団における時計遺伝子の関連解析
〇肥田昌子 1 北村真吾 1 片寄泰子 1 加藤美恵 1 小野浩子 1 角谷寛 2 内山真 3 海老澤尚 4
井上雄一 5,6 亀井雄一 7 大川匡子 8 高橋清久 8 三島和夫 1
1 国立精神・神経医療研究センター 精神保健研究所 精神生理研究部 2 滋賀医科大学
医学部附属病院 神経科 3 日本大学 医学部 精神医学系 4 和楽会 横浜クリニック
5 東京医科大学 睡眠学講座 6 睡眠総合ケアクリニック代々木
7 国立精神・神経医療研究センター 病院 臨床検査部 8 公益財団法人 精神神経科学振興財団

P120A The transcription factor DBP regulates expression of Kiss1 in the anteroventral periventricular nucleus
転写因子 DBP は前腹側室周辺核における Kiss1 発現を制御する
〇田口絵梨 1 富樫昭彦 1 松本貴寛 1 深沢広史 1 野川隆 1 足立明人 1
1 埼玉大学理工学研究科 細胞制御学研究室
P121B Noise-induced Phase Synchronization of Circadian Rhythms in Cyanobacteria
シアノバックテリア懸日リズムのノイズ同期について
○牧野雄一郎 1 伊藤浩史 2
1 九州大学 芸術工学府 2 九州大学 芸術工学研究院

P122A Association between daytime cold exposure in winter and longer sleep time independent of day length: A cross-sectional analysis of the HEIJO-KYO Study
日中寒冷曝露と睡眠時間の日長と独立した関連：平城京スタディ
○佐伯圭吾 1 大林賢史 1 車谷典男 1
1 奈良県立医科大学地域健康医学講座

P123B Driving the circadian pacemaker by the KaiC phosphorylation cycle
KaiC リン酸化サイクルによる懸日リズムメーカーの駆動機構の解明
○原田由記 1 伊藤久美子 1 村山依子 1 岡倉栄圭子 2 近藤孝男 1
1 名古屋大学大学院 理学研究科 2 関西医科大学 医学部

P124A Whole-body imaging for unbiased analysis of cell status
○久保田晋平 1 田井中一貴 1,2 須山猛 1 洲崎悦生 1,2 上田泰己 1,2
1 東大・院医・システムズ薬理 2 理研・生命システム研究センター・合成生物学
抄録（発表要旨）

特別講演
The last fifty years have seen a remarkable transformation in our understanding and application of the science of biological timekeeping, especially in the circa-24 h domain. We have moved forward from debating the existence of an endogenous “clock” to identifying a pathological point mutation in the human homolog of a fruit fly gene that regulates behavioral rhythmicity. Of course, such an explosion of knowledge does not take place de novo or by chance. Who made the antecedent observations, experiments, and insights that (paraphrasing Louis Pasteur) prepared the minds of contemporary researchers for discovery? I will provide a short account attempting to highlight the scientific path that preceded and launched modern mechanistic research in circadian biology, which, by my subjective estimation, dates from the 1970s. I trace the origins of ideas from antiquity, to the experimental study of the daily movements of leaves, and on to the 20th century realization that circadian rhythms are endogenous and innate. With the appreciation that such rhythms could be utilized by organisms for actual time measurement – as internal “clocks” – a fresh wave of mathematical biologists, neuroscientists, and molecular geneticists were attracted to the field and set the stage for its spectacular recent progress. Now the clock paradigm, which has proven so useful for the field’s development, is being re-framed as a temporal program of events at different times of day, orchestrated by a multiplicity of circadian oscillators ultimately entrained by light. The interdisciplinary investigation of that concept – from molecules, to cells and tissues, and even to communities – is now well underway.
Interaction between space and time in our conscious mind

Shigeru Kitazawa

Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences,
Department of Brain Physiology, Graduate School of Medicine,
Center for Information and Neural Networks,
Osaka University

Newton wrote in Principia that absolute time flows equably without relation to anything external. Does time in our conscious mind flow equably? Experiences in our daily life tell us that the answer is “No”. In laboratories of psychology, our mental time goes further than the level of not being equable, but even to the level of reversal. For example, we see color before it is actually presented (color phi), feel a touch where it would be touched in the future (cutaneous rabbit), err in ordering touches to the hands when the arms are crossed, or in ordering visual stimuli that are given just prior to the onset of saccadic eye movements. It is now generally accepted that these temporal illusions result from “post-diction”, during which the brain settles events in both space and time so that the yielded spatio-temporal perception best explains the information accumulated over a certain period of time. In some cases, the process of post-diction can be approximated by Bayesian estimation. In either case, mental time perception is by no means independent of anything external but determined through interaction with perception of space in our conscious mind.

Review articles

時間生物学 Vol. 21, No. 2 (2015)
—112—